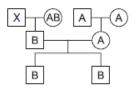

SL Paper 2

a.	List tw	o factors that could cause an increase in the size of an animal population.	[2
	1. 2.		
э.	Outline	how overpopulation of a species in a given environment may lead to evolution.	[4
	_		
Ν	/lar	kscheme	
a.	a. nata	lity / increased birth rate;	
	b. imm	igration;	
	c. extra	a food/water / breeding sites;	
	d. expa	anding habitat;	
	e. lack	of predators/disease/parasites / reduced death rate;	
o.	a. mor	e are born than can survive;	
	b. ther	e is variety/variability in the offspring;	
	c. com	petition for resources / struggle for survival / selection pressure;	
	d. only	the most able/adapted survive / survival of the fittest;	
	e. the	survivors reproduce and pass on genes;	
	f. gene	s of less able/adapted are eliminated / change in the gene pool;	
	g. natu	ral selection occurs;	

Examiners report

- a. Most of the candidates obtained both marks. Expanding habitat was hardly mentioned.
- b. Many candidates failed to receive points because they often wrongly implied the following: "...competition between species", "survival of the fittest species".


The graph shows a sigmoid population growth curve.

The table summarizes the genome size of several organisms.

Organism type	Organism	Genome size / base pairs
Bacterium	Helicobacter pylori	1667867
Fruit fly	Drosophila melanogaster	130 000 000
Rice	Oryza sativa	420 000 000
Human	Homo sapiens	3200000000

The figure shows a pedigree chart for the blood groups of three generations.

a. Identify the phases labelled X and Y.

[1]

X:

Y:

b. Outline how fossil records can provide evidence for evolution.

[2]

c(i).Distinguish between the terms genotype and phenotype.

[1]

c(ii)Outline a structural difference between the chromosomes of Helicobacter pylori and Homo sapiens.

[1]

c(iii)Deduce the percentage of adenine in Oryza sativa if the proportion of guanine in that organism is 30 %.

[1]

[1]

d(ii)Describe ABO blood groups as an example of codominance.

d(i)Deduce the possible phenotypes of individual X.

[1]

Markscheme

a. X: plateau phase

Y: exponential growth / log phase

(both needed)

- b. a. the sequence in which fossils appear matches the expected sequence of evolution;
 - b. comparisons with fossils and living organisms (morphology) shows change in characteristics from an ancestral form / OWTTE;

Vestigial organs and homologous structures are acceptable answers.

- c. fossils of extinct species show that (evolutionary) change has occurred;
- d. fossils can be dated with radioisotopes / geological depth/strata indicates (relative) age/date of organism;
- e. can yield DNA for molecular clock analysis;
- f. example of any of the above can earn one mark (eg: reptiles follow amphibians);
- c(i) genotype is the genetic make-up/set of alleles (of an organism) while phenotype is the characteristics (expressed/shown in an organism)
- c(ii)chromosome from bacteria has no protein associated/naked DNA / bacteria is circular, H. sapiens is linear / (chromosomes of) H. sapiens are much bigger/have many more base pairs than bacteria
 - N.B.: Answer must refer to "chromosomes" not genomes of the two organisms.

c(iii)20 %

d(i)A, B, AB and O

All four phenotypes must be shown to award the mark.

d(ii)allele IA and the allele IB are (co)dominant as they are both expressed in the heterozygote/AB type blood / OWTTE

Examiners report

- a. Well prepared candidates could state 'plateau phase and exponential growth or log phase'. A surprising number reversed the answers, probably due to carelessness.
- b. There were many convoluted answers without substance. Most gained the marks by stating that fossils can be compared with living organisms with an example.
- c(i) Most managed to give a reasonable explanation of genotype and phenotype.
- c(ii)Many missed the word 'chromosomes' in the stem. The knowledge of naked v proteins or circular v linear was expected from the core. Using the data it was expected that the candidates could state that the human chromosomes were <u>much</u> bigger (divide by 46) or that there were many more base pairs as there was about 3 X 10³ difference.
- c(iii)Considering that everyone on the IB diploma course studies maths at some level, a surprising number left (iii) blank or gave answers that did not make sense.
- d(i)A pleasing number were able to state that all 4 blood groups were possible in (i), and most had a reasonable attempt at explaining codominance in part (ii).
- d(ii)A pleasing number were able to state that all 4 blood groups were possible in (i), and most had a reasonable attempt at explaining codominance in part (ii).